Trial and Improvement

Objective

Mentally estimate and approximate solutions to numerical calculations.
Understand and use the concept of place value in decimals and relate it to computation.

Explanation of the activity

Use "trial and improvement" to find the length of the side of a cube-shaped box that can hold 100 cm^{3} of ice cream.
The two mental calculations $4 \times 4 \times 4=64$ and $5 \times 5 \times 5=125$ should suggest a possible starting calculation such as $4.5 \times 4.5 \times 4.5=91$, which can be shortened to $4.5^{3}=91$.
This activity gives students the opportunity to enhance their understanding of decimals and improve their skills in estimation.

Using the calculator

Calculator functions used: Multiplication, FSE, TAB

Press the following buttons and then start operation.

$$
\text { ON/C MODE } 0
$$

Set the calculator to "fixed point" notation with a TAB
 value of 0 .
(Doing this will display answers to the nearest whole number.)
Adjust the TAB setting to I and then continue to improve the accuracy of the answer.


```
FYED
    TE ETTMU
&x TMEप-%?
```


Trial and Improvement

Junior high school

Switch FSE and TAB to normal display for further operation.

Trial and Improvement

-••••••• . Using the activity in the classroom

This activity may be given to students with little introduction or, with the use of the OHP unit, this or a similar task may be introduced to the whole class followed by individual work on one or more of the extension activities. The use of the multi-line playback function will be of practical benefit in tackling questions involving trial and improvement.

-•••••••• . . . • Points for students to discuss

It will be necessary to familiarize the students with FSE and TAB in order to understand, for example, why $4.64 I^{3}$ and 4.642^{3} both have the value 100 to the nearest unit. In the context of similar problems, students will need to consider what degrees of accuracy are appropriate; in the case of cubic centimeters of ice cream, possibly only to one decimal place.

Further Ideas

- Find the side of a cubical carton whose volume is $1 / 2$ liter. It may be necessary to remind students of the equivalence of 500 ml (fluid measure) and $500 \mathrm{~cm}^{3}$ (solid measure).
- Find the dimensions of a fruit juice carton whose sides are in the proportion $1: 2: 3$ and whose capacity is 1 liter.
- Find the Golden Ratio x by trial and improvement of the relation

$$
\text { Guess } x(\text { Guess }+1)=1
$$

Use the playback function on the calculator to show that

$$
x=1 /(1+x) \text { and that } x=\sqrt{(1-x)} .
$$

All metric paper has the same shape (except golden). If A0 has an area of $1 \mathrm{~m}^{2}$ and the longer side is $\sqrt{2}$ times bigger than the smaller side, find these dimensions. What are the dimensions of A4? Have the students confirm their calculations by measuring a sheet.

